ANDTAX의 뉴스 / / 2023. 3. 11. 00:27

[2023-03-11] 실시간 번역뉴스

반응형

Making a Computational Attorney

 

This "blue sky idea" paper outlines the opportunities and challenges in data mining and machine learning involving making a computational attorney -- an intelligent software agent capable of helping human lawyers with a wide range of complex high-level legal tasks such as drafting legal briefs for the prosecution or defense in court. In particular, we discuss what a ChatGPT-like Large Legal Language Model (L$^3$M) can and cannot do today, which will inspire researchers with promising short-term and long-term research objectives.

 

 

 

 

Personalisation within bounds: A risk taxonomy and policy framework for the alignment of large language models with personalised feedback

 

Large language models (LLMs) are used to generate content for a wide range of tasks, and are set to reach a growing audience in coming years due to integration in product interfaces like ChatGPT or search engines like Bing. This intensifies the need to ensure that models are aligned with human preferences and do not produce unsafe, inaccurate or toxic outputs. While alignment techniques like reinforcement learning with human feedback (RLHF) and red-teaming can mitigate some safety concerns and improve model capabilities, it is unlikely that an aggregate fine-tuning process can adequately represent the full range of users' preferences and values. Different people may legitimately disagree on their preferences for language and conversational norms, as well as on values or ideologies which guide their communication. Personalising LLMs through micro-level preference learning processes may result in models that are better aligned with each user. However, there are several normative challenges in defining the bounds of a societally-acceptable and safe degree of personalisation. In this paper, we ask how, and in what ways, LLMs should be personalised. First, we review literature on current paradigms for aligning LLMs with human feedback, and identify issues including (i) a lack of clarity regarding what alignment means; (ii) a tendency of technology providers to prescribe definitions of inherently subjective preferences and values; and (iii) a 'tyranny of the crowdworker', exacerbated by a lack of documentation in who we are really aligning to. Second, we present a taxonomy of benefits and risks associated with personalised LLMs, for individuals and society at large. Finally, we propose a three-tiered policy framework that allows users to experience the benefits of personalised alignment, while restraining unsafe and undesirable LLM-behaviours within (supra-)national and organisational bounds.

 

 

 

 

Disambiguation of Company names via Deep Recurrent Networks

 

Name Entity Disambiguation is the Natural Language Processing task of identifying textual records corresponding to the same Named Entity, i.e. real-world entities represented as a list of attributes (names, places, organisations, etc.). In this work, we face the task of disambiguating companies on the basis of their written names. We propose a Siamese LSTM Network approach to extract -- via supervised learning -- an embedding of company name strings in a (relatively) low dimensional vector space and use this representation to identify pairs of company names that actually represent the same company (i.e. the same Entity). Given that the manual labelling of string pairs is a rather onerous task, we analyse how an Active Learning approach to prioritise the samples to be labelled leads to a more efficient overall learning pipeline. With empirical investigations, we show that our proposed Siamese Network outperforms several benchmark approaches based on standard string matching algorithms when enough labelled data are available. Moreover, we show that Active Learning prioritisation is indeed helpful when labelling resources are limited, and let the learning models reach the out-of-sample performance saturation with less labelled data with respect to standard (random) data labelling approaches.

 

 

 

 

반응형
  • 네이버 블로그 공유
  • 네이버 밴드 공유
  • 페이스북 공유
  • 카카오스토리 공유